各种坐标系含义

发布时间:2016-04-10 23:45:53

WGS 84 是常用的经纬度的椭球面,也是一个公开的基准面。 
正转换:经纬度-->高斯投影坐标。 
大地基准面用于高斯投影,或者高斯分带投影,无论是5480,还是wgs84,都有可能。 
在不同的基准面下,同一个点的经纬度不同,投影坐标也不同。
地理坐标网(经纬网) 
为了制作和使用地图的方便,高斯-克吕格投影的地图上绘有两种坐标网:地理坐标网和直角坐标网。
在我国11万-110万地形图上,经纬线只以图廓的形式表现,经纬度数值注记在内图廓的四角,在内外图廓间,绘有黑白相间或仅用短线表示经差、纬差1’的分度带,需要时将对应点相连接,就构成很密的经纬网。在120万-1100万地形图上,直接绘出经纬网,有时还绘有供加密经纬网的加密分割线。纬度注记在东西内外图廓间,经度注记南北内外图廓间。 
直角坐标网(方里网) 
直角坐标网是以每一投影带的中央经线作为纵轴(X轴),赤道作为横轴(Y轴)。纵坐标以赤道我0起算,赤道以北为正,以南为负。我国位于北半球,纵坐标都是正值。横坐标本应以中央经线为0起算,以东为正,以南为负,但因坐标值有正有负,不便于使用,所以又规定凡横坐标值均加500公里,即等于将纵坐标轴向西移500公里。横坐标从此纵轴起算,则都成正值。然后,以公里为单位,按相等的间距作平行于纵、横轴的若干直线,便构成了图面上的平面直角坐标网,又叫方里网。
Geographic Coordinate SystemProjection Coordinate System的区别和联系:
地理坐标系统(Geographic Coordinate System)
1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求 
我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 
Spheroid: Krasovsky_1940 
Semimajor Axis: 6378245.000000000000000000 
Semiminor Axis: 6356863.018773047300000000 
Inverse Flattening(扁率): 298.300000000000010000 
然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: 
Datum: D_Beijing_1954 
表示,大地基准面是D_Beijing_1954 
-------------------------------------------------------------------------------- 
有了SpheroidDatum两个基本条件,地理坐标系统便可以使用。 
完整参数: 
Alias: 
Abbreviation: 
Remarks: 
Angular Unit: Degree (0.017453292519943299) 
Prime Meridian(起始经度): Greenwich (0.000000000000000000) 
Datum(大地基准面): D_Beijing_1954 
Spheroid(参考椭球体): Krasovsky_1940 
Semimajor Axis: 6378245.000000000000000000 
Semiminor Axis: 6356863.018773047300000000 
Inverse Flattening: 298.300000000000010000 

投影坐标系统(Projection Coordinate System)
2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。 
Projection: Gauss_Kruger 
Parameters: 
False_Easting: 500000.000000 
False_Northing: 0.000000 
Central_Meridian: 117.000000 
Scale_Factor: 1.000000 
Latitude_Of_Origin: 0.000000 
Linear Unit: Meter (1.000000) 
Geographic Coordinate System: 
Name: GCS_Beijing_1954 
Alias: 
Abbreviation: 
Remarks: 
Angular Unit: Degree (0.017453292519943299
Prime Meridian: Greenwich (0.000000000000000000) 
Datum: D_Beijing_1954 
Spheroid: Krasovsky_1940 
Semimajor Axis: 6378245.000000000000000000 
Semiminor Axis: 6356863.018773047300000000 
Inverse Flattening: 298.300000000000010000 
从参数中可以看出,每一个投影坐标系统都必定会Geographic Coordinate System。投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。 
那么为什么投影坐标系统中要存在坐标系统的参数呢? 
这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。好了,投影的条件就出来了: 
a、球面坐标 
b、转化过程(也就是算法) 
也就是说,要得到投影坐标就必须得有一个拿来投影的球面坐标,然后才能使用算法去投影! 
即每一个投影坐标系统都必须要求有Geographic Coordinate System参数。 
3、我们现在看到的很多教材上的对坐标系统的称呼很多,都可以归结为上述两种投影。其中包括我们常见的非地球投影坐标系统 
__________________ 
大地坐标(Geodetic Coordinate
大地测量中以参考椭球面为基准面的坐标。地面点P的位置用大地经度L、大地纬度B和大地高H表示。当点在参考椭球面上时,仅用大地经度和大地纬度表示。大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。 
方里网:是由平行于投影坐标轴的两组平行线所构成的方格网。因为是每隔整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时又是平行于直角坐标轴的坐标网线,故又称直角坐标网。 
11——120万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称分度带”),必要时对应短线相连就可以构成加密的经纬线网。12 5万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。 
我国的150——1100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。 
直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。这样,坐标系中就出现了四个象限。纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。 
虽然我们可以认为方里网是直角坐标,大地坐标就是球面坐标。但是我们在一副地形图上经常见到方里网和经纬度网,我们很习惯的称经纬度网为大地坐标,这个时候的大地坐标不是球面坐标,她与方里网的投影是一样的(一般为高斯),也是平面坐标。

GIS中空间坐标系详解
AO开发中,经常会碰到空间坐标系统方面的问题,理清楚概念对于我们开发者来说是相当重要的,收集整理了相关的资料,进行了总结,以飨各位。GIS中坐标系定义是GIS系统的基础,GIS中的坐标系由基准面(Datum)和地图投影Projection)两组参数确定。
地球椭球体
地球是一个表面很复杂的球体,人们以假想的平均静止的海水面形成的大地体为参照,推求出近似的椭球体,理论和实践证明,该椭球体近似一个以地球短轴为轴的椭园而旋转的椭球面,这个椭球面可用数学公式表达,将自然表面上的点归化到这个椭球面上,就可以计算了。 
常用的一些椭球及参数 
海福特椭球(1910) 我国52年以前基准椭球 
 a=6378388m b=6356911.9461279m α=0.33670033670 
克拉索夫斯基椭球(1940 Krassovsky)  北京54坐标系基准椭球 
 a=6378245m b=6356863.018773m α=0.33523298692 
1975I.U.G.G推荐椭球(国际大地测量协会1975) 西安80坐标系基准椭球
 a=6378140m b=6356755.2881575m α=0.0033528131778 
WGS-84椭球(GPS全球定位系统椭球、17国际大地测量协会)  WGS-84 GPS 基准椭球 
 a=6378137m b=6356752.3142451m α=0.00335281006247 

Krasovsky_1940椭球及其相应参数
Alias: 
Abbreviation: 
Remarks: 
Angular Unit: Degree (0.017453292519943299) 
Prime Meridian(起始经度): Greenwich (0.000000000000000000) 
Datum(大地基准面): D_Beijing_1954 
Spheroid(参考椭球体): Krasovsky_1940 
Semimajor Axis: 6378245.000000000000000000 
Semiminor Axis: 6356863.018773047300000000 
Inverse Flattening: 298.300000000000010000 
地球椭球面上任一点的位置,可由该点的纬度(B)和精度(L)确定,即地面点的地理坐标值,由经线和纬线构成两组互相正交的曲线坐标网叫地理坐标网。由经纬度构成的地理坐标系统又叫地理坐标系。地理坐标分为天文地理坐标和大地地理坐标。天文地理坐标是用天文测量方法确定的,大地地理坐标是用大地测量方法确定的。我们在地球椭球面上所用的地理坐标系属于大地地理坐标系,简称大地坐标系
确定椭球的大小后,还要进行椭球定向,即把旋转椭球面套在地球的一个适当的位置,这一位置就是该地理坐标系的坐标原点,是全部大地坐标计算的起算点,俗称大地原点
基准面
是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。
GIS地图投影的定义:是为解决由不可展的椭球面描绘到平面上的矛盾,用几何透视方法或数学分析的方法,将地球上的点和线投影到可展的曲面(平面、园柱面或圆锥面)上,将此可展曲面展成平面,建立该平面上的点、线和地球椭球面上的点、线的对应关系。我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用正轴等角割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用正轴等角园柱投影,又叫墨卡托投影(Mercator),我国的GIS系统中应该采用与我国基本比例尺地形图系列一致的地图投影系统。
Projection: Gauss_Kruger 
Parameters: 
False_Easting: 500000.000000 
False_Northing: 0.000000 
Central_Meridian: 117.000000 
Scale_Factor: 1.000000 
Latitude_Of_Origin: 0.000000 
Linear Unit: Meter (1.000000) 
Geographic Coordinate System: 
Name: GCS_Beijing_1954 
Alias: 
Abbreviation: 
Remarks: 
Angular Unit: Degree (0.017453292519943299) 
Prime Meridian: Greenwich (0.000000000000000000) 
Datum: D_Beijing_1954 
Spheroid: Krasovsky_1940 
Semimajor Axis: 6378245.000000000000000000 
Semiminor Axis: 6356863.018773047300000000 
Inverse Flattening: 298.300000000000010000 
高斯-克吕格直角坐标 
高斯-克吕格投影是设想用一个椭圆柱横套在地球椭球的外面,并与设定的中央经线相切。 
高斯-克吕格投影分带规定:该投影是国家基本比例尺地形图的数学基础,为控制变形,采用分带投影的方法,在比例尺 12.5-150万图上采用分带,对比例尺为 11万及大于11万的图采用分带。 
分带法:从格林威治零度经线起,每分为一个投影带,全球共分为60个投影带,东半球从东经0°-6°为第一带,中央经线为,依此类推,投影带号为1-30。其投影代号n和中央经线经度L0的计算公式为:L0=(6n-3)°;西半球投影带从180°回算到,编号为31-60,投影代号n中央经线经度L0的计算公式为L0=360-(6n-3)°
分带法:从东经1°30′起,每为一带,将全球划分为120个投影带,东经1°30′-4°30′...178°30′-西经178°30′...1°30′-东经1°30′。 
东半球有60个投影带,编号1-60,各带中央经线计算公式:L0=3°n ,中央经线为6°...180°
西半球有60个投影带,编号1-60,各带中央经线计算公式:L0=360°-3°n ,中央经线为西经177°...3° 
我国规定将各带纵坐标轴西移500公里,即将所有y值加上500公里,坐标值前再加各带带号以18带为例,原坐标值为y=243353.5m,西移后为y=743353.5,加带号通用坐标为y=18743353.5 
大地坐标(Geodetic Coordinate:大地测量中以参考椭球面为基准面的坐标。地面点P的位置用大地经度L、大地纬度B和大地高H表示。当点在参考椭球面上时,仅用大地经度和大地纬度表示。大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。

Coordinate SystemsProjected Coordinate SystemsGauss KrugerBeijing 1954目录中,我们可以看到四种不同的命名方式:

 

    Beijing 1954 3 Degree GK CM 75E.prj

    Beijing 1954 3 Degree GK Zone 25.prj

    Beijing 1954 GK Zone 13.prj

    Beijing 1954 GK Zone 13N.prj

 

    对它们的说明分别如下:

 

    三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号

    三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号

    六度分带法的北京54坐标系,分带号为13,横坐标前加带号

    六度分带法的北京54坐标系,分带号为13,横坐标前不加带号

 

    Coordinate SystemsProjected Coordinate SystemsGauss KrugerXian 1980目录中,文件命名方式又有所变化:

 

    Xian 1980 3 Degree GK CM 75E.prj

    Xian 1980 3 Degree GK Zone 25.prj

    Xian 1980 GK CM 75E.prj

    Xian 1980 GK Zone 13.prj

 

    西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。

各种坐标系含义

相关推荐