异面直线的夹角-线面角(含答案)

发布时间:2020-04-06 06:48:42

异面直线的夹角-线面角(含答案)



空间角

1、异面直线所成角的求法一是几何法,二是向量法。异面直线所成的角的范围:

几何法求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解。基本思路是选择合适的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点。常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

例1在正方体中,E是AB的中点,

(1)求BA/与CC/夹角的度数.

(2)求BA/与CB/夹角的度数.

(3)求A/E与CB/夹角的余弦值.

2:长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的余弦值

直接平移:常见的利用其中一个直线a和另一个直线b上的一个已知点,构成一个平面,在此平面内做直线a的平行线。

解法一:如图④,过B1点作BE∥BC1交CB的延长线于E点。

则∠DB1E就是异面直线DB1与BC1所成角,连结DE交AB于M,DE=2DM=3

∠DB1E=

解法二:如图⑤,在平面D1DBB1中过B点作BE∥DB1交D1B1的延长线于E,则∠C1BE就是异面直线DB1与BC1所成的角,连结C1E,在△B1C1E中,

∠C1B1E=135°,C1E=3∠C1BE=

课堂思考:

1.如图,PA矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的余切值为。

2.在长方体ABCD- A1B1C1D1中,若棱B B1=BC=1,AB=,求D B和AC所成角的余弦值.

3 如图所示,长方体A1B1C1D1-ABCD中,∠ABA1=45°,A1AD1=60°,求异面直线A1BAD1所成的角的度数.

课堂练习

如图空间四边形ABCD中,四条棱AB,BC,CD,DA及对角线AC,BD均相等,E为AD的中点,F为BC中,

(1) 求直线AB和CE 所成的角的余弦值。

(2) 求直线AF和CE 所成的角的余弦值。

、线面角

1、线面角的范围:θ[0,].

2、线面角的求法

1)解决该类问题的关键是找出斜线在平面上的射影,然后将直线与平面所成的角转化为直线与直线所成的角.在某一直角三角形内求解.

2线面角的求法还可以不用做出平面角.可求出线上某点到平面的距离d,利用sinα可求.

直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 ( 如图1 )四面体ABCS中,SA,SB,SC 两两垂直,∠SBA=45°,SBC=60°, MAB的中点,

求(1)BC与平面SAB所成的角。

(2)SC与平面ABC所成的角。

:(1) ∵SCSB,SCSA,

图1

SC⊥平面SAB SB是斜线BC 在平面SAB上的射影,

∴∠SBC是直线BC与平面SAB所成的角为60°

(2) 连结SM,CM,则SMAB,

又∵SCAB,AB⊥平面SCM,

∴面ABC⊥面SCM

SSHCMH, SH⊥平面ABC

CH即为 SC 在面ABC内的射影。

SCH SC与平面ABC所成的角。

sinSCH=SHSC

SC与平面ABC所成的角的正弦值为√77

(“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)

2. 利用公式sinθ=h/ι

其中θ是斜线与平面所成的角, h是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2 ( 如图2) 长方体ABCD-A1B1C1D1 , AB=3 ,BC=2, A1A= 4 ,求AB与面 AB1C1D 所成的角。

解:设点 BAB1C1D的距离为h,

VBAB1C1=VABB1C1∴1/3 SAB1C1·h= 1/3 SBB1C1·AB,易得h=125

AB 与 面 A B1C1D 所成的角为θ,sinθ=hAB=45

图2

AB与面AB1C1D 所成的角为arcsin 45

3、如图甲,在平面四边形ABCD中∠A45°,∠C90°,∠ADC105°,ABBD,再将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点EF分别为棱ACAD的中点.

(1)求证:DC⊥平面ABC

(2)BF与平面ABC所成角的正弦值.

证明:在图甲中,∵ABBD且∠A45°,

∴∠ADB45°.∴∠ABD90°,即ABBD.

在图乙中,∵平面ABD⊥平面BDC,且平面ABD∩平面BDCBD

AB⊥平面BDC.ABCD.

又∠DCB90°,∴DCBC,且ABBCB.

DC⊥平面ABC.

2)EF分别为ACAD的中点,∴EFCD.

又由(1)DC⊥平面ABC

EF⊥平面ABC,垂足为点E.

∴∠FBEBF与平面ABC所成的角.

在图甲中,∵∠ADC105°,∴∠BDC60°,∠DBC30°.

CDa,则BD2aBCaBFBDaEFCDa.

∴在RtFEB中,sinFBE.

BF与平面ABC所成角的正弦值为.

练习3在三棱柱ABCA1B1C1中,各棱长

相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是 (  ) 答案:C

A30° B45°

C60° D90

练习4(2011·全国卷)如图,四棱锥SABCD中,ABCDBCCD,侧面SAB为等

边三角形,ABBC2CDSD1.

(1)证明:SD⊥平面SAB

(2)AB与平面SBC所成的角的正弦值

解:(1)证明:取AB的中点E,连接DE

则四边形BCDE为矩形,DECB2.

连接SE,则SEABSE.

SD1,故ED2SE2SD2,所以∠DSE为直角,

SDSE.

ABDEABSEDESEE,得AB⊥平面SDE

所以ABSD.

SD与两条相交直线ABSE都垂直,

所以SD⊥平面SAB.

(2)AB⊥平面SDE知,平面ABCD⊥平面SDE.

SFDE,垂足为F,则SF⊥平面ABCDSF.

FGBC,垂足为G,则FGDC1.

连接SG,则SGBC.

BCFGSGFGG

BC⊥平面SFG,平面SBC⊥平面SFG.

FHSGH为垂足,则FH⊥平面SBC.

FH,即F到平面SBC的距离为.

由于EDBC,所以ED∥平面SBCE到平面SBC的距离d也为.

AB与平面SBC所成的角为α,则sinα

课后作业、如图,在四棱锥PABCD中,PA⊥底面ABCDABADACCD

ABC=60°,PAABBCEPC的中点.

(1)求PB和平面PAD所成的角的大小;

(2)证明AE⊥平面PCD

(3)求二面角APDC的正弦值.

思维启迪:(1)先找出PB和平面PAD所成的角,线面角的定义要能灵活运用;(2)可以利用线面垂直根据二面角的定义作角.

(1)解 在四棱锥PABCD中,

PA⊥底面ABCDAB平面ABCD

PAAB.又ABADPAADA

从而AB⊥平面PAD

PB在平面PAD内的射影为PA

从而∠APBPB和平面PAD所成的角.

在Rt△PAB中,ABPA,故∠APB=45°.

所以PB和平面PAD所成的角的大小为45°.

(2)证明 在四棱锥PABCD中,

PA⊥底面ABCDCD平面ABCD

CDPA.由条件CDACPAACA

CD⊥平面PAC.

AE平面PAC,∴AECD.

PAABBC,∠ABC=60°,可得ACPA.

EPC的中点,∴AEPC.

PCCDC,综上得AE⊥平面PCD.

(3)解 过点EEMPD,垂足为M,连接AM,如图所示.

由(2)知,AE⊥平面PCDAM在平面PCD内的射影是EM

AMPD.

因此∠AME是二面角APDC的平面角.

由已知,可得∠CAD=30°.设ACa,可得

PAaADaPDaAEa.

在Rt△ADP中,∵AMPD,∴AM·PDPA·AD,则AMa.

在Rt△AEM中,sin∠AME.所以二面角APDC的正弦值为.

探究提高 (1)求直线与平面所成的角的一般步骤:

①找直线与平面所成的角,即通过找直线在平面上的射影来完成;

②计算,要把直线与平面所成的角转化到一个三角形中求解.

(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.

正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值为 (  )

A. B. C. D.

答案 D

解析 如图,连接BDACO,连接D1O,由于BB1DD1,∴DD1与平面ACD1所成的角就是BB1与平面ACD1所成的角.易知∠DD1O即为所求.设正方体的棱长为1,

DD1=1,DOD1O

∴cos ∠DD1O.

BB1与平面ACD1所成角的余弦值为.

异面直线的夹角-线面角(含答案)

相关推荐