(完整版)晶体管(或半导体)的热阻与温度、功耗之间的关系

发布时间:2020-05-17 14:25:55

晶体管(或半导体)的热阻与温度、功耗之间的关系为:

Ta=Tj-*P(Rjc+Rcs+Rsa)=Tj-P*Rja

下图是等效热路图:

公式中,Ta表示环境温度,Tj表示晶体管的结温, P表示功耗,Rjc表示结壳间的热阻,Rcs表示晶体管外壳与散热器间的热阻,Rsa表示散热器与环境间的热阻。Rja表示结与环境间的热阻。

当功率晶体管的散热片足够大而且接触足够良好时,壳温Tc=Ta,晶体管外壳与环境间的热阻Rca=Rcs+Rsa=0。此时Ta=Tj-*P(Rjc+Rcs+Rsa)演化成公式Ta=Tc=Tj-P*Rjc。

厂家规格书一般会给出,最大允许功耗Pcm、Rjc及(或) Rja等参数。一般Pcm是指在Tc=25℃或Ta=25℃时的最大允许功耗。当使用温度大于25℃时,会有一个降额指标。

以ON公司的为例三级管2N5551举个实例:

2N5551规格书中给出壳温Tc=25℃时的最大允许功耗是1.5W,Rjc是83.3度/W。

代入公式Tc=Tj- P*Rjc有:25=Tj-1.5*83.3可以从中推出最大允许结温Tj为150度。一般芯片最大允许结温是确定的。

所以,2N5551的允许壳温与允许功耗之间的关系为:Tc=150-P*83.3。比如,假设管子的功耗为1W,那么,允许的壳温Tc=150-1*83.3=66.7度。

注意,此管子Tc =25℃时的最大允许功耗是1.5W,如果壳温高于25℃,功率就要降额使用。规格书中给出的降额为12mW/度(0.012W/度)。我们可以用公式来验证这个结论。假设壳温为Tc,那么,功率降额为0.012*(Tc-25)。则此时最大总功耗为1.5-0.012*(Tc-25)。把此时的条件代入公式Tc=Tj- P*Rjc得出:

Tc=150-(1.5-0.012*(Tc-25))*83.3,公式成立。

一般情况下没办法测Tj,可以经过测Tc的方法来估算Tj。公式变为:

Tj=Tc+P*Rjc

同样以2N5551为例。假设实际使用功率为1.2W,测得壳温为60℃,那么,Tj=60+1.2*83.3=159.96此时已经超出了管子的最高结温150度了!

按照降额0.012W/℃的原则,60℃时的降额为(60-25)*0.012=0.42W,1.5-0.42=1.08W。也就是说,壳温60℃时功率必须小于1.08W,否则超出最高结温。

假设规格书没有给出Rjc的值,可以如此计算:Rjc=(Tj-Tc)/P,如果也没有给出Tj数据,那么一般硅管的Tj最大为150℃。同样以2N5551为例。知道25度时的功率为1.5W,假设Tj为150,那么代入上面的公式:Rjc=(150-25)/1.5=83.3℃/W,恰好等于规格书给出的实际热阻。

如果厂家没有给出25时的功率。那么可以自己加一定的功率加到使其壳温达到允许的最大壳温时(比如民品级的器件为70),再把数据代入:Rjc=(Tjmax-Tcmax)/P。有给Tj最好,没有时,一般硅管的Tj取150℃。

我还要作一下补充说明。

一、可以把半导体器件分为功率器件和小功率器件。

1、(大)功率器件的额定功率一般是指带散热器时的功率,散热器足够大时且散热良好时,可以认为其外壳到环境之间的热阻为0,所以理想状态时壳温即等于环境温度。功率器件由于采用了特殊的工艺,所以其最高允许结温有的可以达到175℃。但是为了保险起见,一律可以按150℃来计算。适用公式:Ta=Tc=Tj-P*Rjc。设计时,Tj最大值为150℃,Rjc已知,假设环境温度也确定,根据壳温即等于环境温度,那么此时允许的P也就随之确定。

2、小功率半导体器件,比如小功率晶体管,小功率IC,一般使用时是不带散热器的。所以这时就要考虑器件壳体到空气之间的热阻了。一般厂家规格书中会给出Rja,即结到环境之间的热阻。(Rja=Rjc+Rca)。

同样以三级管2N5551为例,其最大使用功率1.5W是在其壳温Tc =25℃时取得的。假设此时环境温度恰好是25℃,又要消耗1.5W的功率,还要保证壳温也是25℃,唯一的可能就是它得到足够良好的散热!但是一般像2N5551这样TO-92封装的三极管,是不可能带散热器使用的。所以,不带散热器的小功率半导体器件要用到的公式是Ta=Tj-P*Rja。一般小功率半导体器件的厂家会在规格书中给出Rja这个参数。

2N5551的Rja厂家给的值是200℃/W。已知其最高结温是150℃,环境温度为25℃时,求允许的功耗,可以把上述数据代入Ta=Tj-P*Rja,得:25=150-P*200,从而得到,P=0.625W。事实上,规格书中就是0.625W。因为2N5551不会加散热器使用,所以我们平常说的2N5551的功率是0.625W而不是1.5W!

还有要注意,SOT-23封装的晶体管其额定功率和Rja数据是在焊接到规定的焊盘(有一定的散热功能)上时测得的。

3、大功率晶体管的额定功率一般是指带散热器散热器足够大时且散热良好时的功率。有时应用中大功率晶体管不带散热器来使用,那么此时其最大功率如何求呢?

    以ON公司的BU406为例。BU406的额定功率为60W(Tc=25℃)。BU406的Rja为70℃/W,最大结温为150℃。由Ta= Tj-P*Rja变形为P=(Tj-Ta)/Rja,把上述数据代人此公式可得,P=(150-Ta)/70。比如环境温度为25℃时,其最大允许功耗为P=(150-25)/70=1.786W。如果机器的最高使用温度为70℃,此时最大允许功耗为P=(150-70)/70=1.14W。可见,尽管BU406的额定功率为60W,但是如果不加散热片使用,其在常温下时的功率不过才1.786W!

Maximum Recurrent Peak Reverse Voltage = 最大反向峰值电压

Maximum RMS(均方根) vltage = 最大反向有效值电压

反激式变换器当开关管导通时,能量存储在励磁电感与漏感中,当开关管截止时,存储在励磁电感的能量传递到副边,而漏感中的能量无法传递到副边,而是损耗在开关管和RCD箝位电路上。开关管S关断时,原边电流给开关管的寄生电容C S充电,此时副边二极管D截止,如图2 a)所示。

当开关管寄生电容C S两端电压为V in时,开关管S截止,副边二极管D导通,副边电压反射到原边电压V OR,原边漏感电流瞬间给C S充电,同时对箝位电容C 1充电,如图2 b)所示

当漏感L S中能量完全释放后箝位电容C 1充电完毕,此时二极管D1截止,电容C 1、电阻R 1构成回路,存储在电容中的能量通过箝位电阻消耗掉,此时开关管S截止,如图2 c)所示

当开关管S导通时,C 1继续通过R 1放电,副边二极管D截止,如图2 d)所示。

(完整版)晶体管(或半导体)的热阻与温度、功耗之间的关系

相关推荐