激光产生原理

发布时间:2019-04-23 03:07:31

激光产生原理

了解激光产生原理,我们必先了解物质的结构,与激光的辐射和吸收的原理。

图一 碳原子示意图

物质由原子组成。图一是一个碳原子的示意图。原子的中心是原子核,由质子和中子组成。质子带有正电荷,中子则不带电。原子的外围布满着带负电的电子,绕着 原子核运动。有趣的是,电子在原子中的能量并不是任意的。描述微观世界的量子力学告诉我们,这些电子会处于一些固定的「能阶」,不同的能阶对应于不同的电 子能量。为了简单起见,我们可以如图一所示,把这些能阶想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目 也不同,例如最低的轨道 (也是最近原子核的轨道) 最多只可容纳 2 个电子,较高的轨道则可容纳 8 个电子等等。事实上,这个过份简化了的模型并不是完全正确的 [1],但它足以帮助我们说明激光的基本原理。

电子可以透过吸收或释放能量从一个能阶跃迁至另一个能阶。例如当电子吸收了一个光子 [2] 时,它便可能从一个较低的能阶跃迁至一个较高的能阶 (图二 a)。同样地,一个位于高能阶的电子也会透过发射一个光子而跃迁至较低的能阶 (图二 b)。在这些过程中,电子吸收或释放的光子能量总是与这两能阶的能量差相等。由于光子能量决定了光的波长,因此,吸收或释放的光具有固定的颜色。

图二 原子内电子的跃迁过程

当原子内所有电子处于可能的最低能阶时,整个原子的能量最低,我们称原子处于基态。图一显示了碳原子处于基态时电子的排列状况。当一个或多个电子处于较高的能阶时,我们称原子处于受激态。前面说过,电子可透过吸收或释放在能阶之间跃迁。跃迁又可分为三种形式﹕

1.自发吸收 - 电子透过吸收光子从低能阶跃迁到高能阶 (图二 a)

2.自发辐射 - 电子自发地透过释放光子从高能阶跃迁到较低能阶 (图二 b)

3.受激辐射 - 光子射入物质诱发电子从高能阶跃迁到低能阶,并释放光子。入射光子与释放的光子有相同的波长和相,此波长对应于两个能阶的能量差。一个光子诱发一个原子发射一个光子,最后就变成两个相同的光子 (图二 c)

图三 红宝石激光的示意图

激光基本上就是由第三种跃迁机制所产生的。图三显示红宝石激光的原理。它由一枝闪光灯,激光介质和两面镜所组成。激光介质是红宝石晶体,当中有微量的铬原 子。在开始时,闪光灯发出的光射入激光介质,使激光介质中的铬原子受到激发,最外层的电子跃迁到受激态。此时,有些电子会透过释放光子,回到较低的能阶。 而释放出的光子会被设于激光介质两端的镜子来回反射,诱发更多的电子进行受激辐射,使激光的强度增加。设在两端的其中一面镜子会把全部光子反射,另一面镜 子则会把大部分光子反射,并让其余小部分光子穿过﹔而穿过镜子的光子就构成我们所见的激光。

图四 粒子数反转的状态

产生激光还有一个巧妙之处,就是要实现所谓粒子数反转的状态。以红宝石激光为例 (图四),原子首先吸收能量,跃迁至受激态。原子处于受激态的时间非常短,大约 秒后,它便会落到一个称为亚稳态的中间状态。原子停留在亚稳态的时间很长,大约是 或更长的时间。电子长时间留在亚稳态,导致在亚稳态的原子数目多于在基态的原子数目,此现象称为粒子数反转。粒子数反转是产生激光的关键,因为它使透过受 激辐射由亚稳态回到基态的原子,比透过自发吸收由基态跃迁至亚稳态的原子为多,从而保证了介质内的光子可以增多,以输出激光。

图五 普通灯光与激光的比较

激光透过受激辐射产生,有以下三大特性 (图五)

1.激光是单色的,在整个产生的机制中,只会产生一种波长的光。这与普通的光不同,例如阳光和灯光都是由多种波长的光合成的,接近白光。

2.激光是相干的,所有光子都有相同的相,相同的偏振,它们迭加起来便产生很大的强度。而在日常生活中所见的光,它们的相和偏振是随机的,相对于激光,这些光就弱得多了。

3.激光的光束很狭窄,并且十分集中,所以有很强的威力。相反,灯光分散向各个方向转播,所以强度很低。

以能量划分,激光可大致可分为三类,第一类是低能量激光,这类激光通常以气体为激光介质,例如在超级市场中常用的条形码扫描仪,就是用氦气和氖气作为激光介 质的;第二类是中能量激光,例如在课堂上用的激光指示器;最后一类为高能量激光,一般用半导体作为激光介质,输出的功率可高达 500 mW。用于热核聚变实验的激光可发射出时间极短但能量极高的激光脉冲,其脉冲功率竟可达10^14 W!这激光可产生达一亿度的高温,引发微粒状的氘-氚燃料进行热核聚变。

[1] 根据量子力学,电子不是在一些明确的轨道上绕原子核运动的,它们的位置只可利用或然率通过薜定谔方程预测。

[2] 量子力学说明光也有粒子的性质,特别是在光与原子作用的时候。光的粒子称为光子。

激光产生原理

相关推荐