论桥梁工程的发展前景

发布时间:2013-11-26 10:51:02

论桥梁工程的发展前景

雷凯 土木工程1185 201113170228

桥梁勘测、设计、施工、养护和检定等的工作过程,以及研究这一过程的科学和工程技术,统称为桥梁工程。它是土木工程的一个分支。

桥梁工程的发展历史

技术方面

 在技术方面,只是凭经验修桥,曾使19世纪8090年代的许多铁路桥发生重大事故;从这时起,正在发展中的结构力学理论得到了重视,而在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故明显大为减少。

  二十世纪以来,公路交通有很大发展。在内陆,需要在更多的河流、峡谷之上建桥。在城市中,以及在各种交通线路相交处,需要建造立交桥。在沿海,既需在大船通航的河口、海湾、海峡修建特大跨度桥梁,又需在某些海岛与大陆之间修建长桥。

  桥梁需要大量修建,而人力、物力、财力有限;于是,不断提高技术水平,引用新材料、新工艺、新桥式,对结构行为进行更精确的数值分析,采用更精确的结构试验进行验证,以使桥梁建设的经济效益不断提高,已成为时代的要求。

桥梁工程学主要研究桥渡设计,包括选择桥址,决定桥梁孔径,考虑通航和线路要求以确定桥面高程,考虑基底不受冲刷或冻胀以确定基础埋置深度,设计导流建筑物等;桥式方案设计;桥梁结构设计;桥梁施工;桥梁检定;桥梁试验;桥梁养护等方面。

材料方面

在建桥材料方面,以高强、轻质、低成本为选择的主要依据,近期仍以发展传统的钢材和混凝土为主,提高其强度和耐久性。对于建筑钢材的脆断机理、初始几何缺陷等,以及混凝土材料的非弹性问题(收缩徐变以及疲劳等),将继续作充分的研究,使能正确控制结构的受力和变形。至于碳纤维塑料等在桥梁上的广泛应用,还必须在降低成本以后才有可能。

设计方面

在桥梁勘察设计方面,随着交通事业的迅速发展,大跨度或复杂的桥型将不断涌现。高速公路的发展,对桥梁设计亦将提出新的要求。在桥式方案设计中,将有可能利用结构优化设计理论,借助电子计算机选出最佳方案。

  在结构设计计算中,采用空间理论来分析桥梁整体受力已成为可能;以概率统计理论为基础的极限状态设计理论,将进一步反映在桥涵设计规范中,使桥梁设计的安全度得到科学合理的保证。桥梁美学作为时代、民族的文化在某些方面的反映,将愈来愈受到人们的重视:桥梁的面貌将蔚为大观。

施工方面

在桥梁施工方面,对施工组织将充分利用电子计算机进行经济有效的管理。在施工技术中,将不断引用新技术和高效率、高功能的机具设备,借以提高质量、缩短工期、降低造价。如采用激光测量控制结构的精确定位;引用自升式水上平台克服深水基础的困难;利用遥控设备在沉井、沉箱中挖基,以减少劳动强度并避免人身危险;利用高质量的焊接技术,借能推广工地焊接等,此外,装配式桥梁也将有所发展,以使结构和构件标准化,生产工业化。

维修方面

在桥梁养护维修方面,要求对既有桥梁建立完善的技术档案管理制度。在桥梁维修检查中,引用新型精密的测量仪表,如用声测法对结构材料的缺陷以及弹性模量进行测定;用手携式金相摄影仪检查钢材的晶体结构俾能及早进行加固防患于末然,以便延长桥梁的使用寿命。

  桥梁工程始终是在生产发展与各类科学技术进步的综合影响下,遵循适用、安全、经济与美观的原则,不断的向前发展。

我国大跨桥现状及发展趋势

改革开放以来,我国公路建设事业迅猛发展,作为公路建设重要组成部分的桥梁建设也得到了相应发展,特别是近十年来,我国大跨径桥梁的建设进入了一个最辉煌的时期,一大批结构新颖、技术复杂、设计和施工难度大和科技含量高的大跨径桥梁相继建成,标志着我国的公路桥梁建设水平已跻身于国际先进行列。近几年建成的特大桥梁,不少在世界桥梁科技进步中具有显著地位。诸如正在建设的重庆朝天门大桥是世界最大跨度钢拱桥,并创造了该类型桥梁十余项世界第一;苏通大桥以主跨1088m为世界第一跨度斜拉桥,同时成为世界上连续长度最大的双塔斜拉桥;润扬长江公路大桥南汊悬索桥,以1490m跨度为世界第三大悬索桥;刚通车的杭州湾跨海大桥为世界第一长跨海大桥;万县长江大桥为目前世界上跨度最大的混凝土拱桥;此外江阴长江公路大桥、香港青马大桥,其跨度分别在悬索桥中居世界第四位和第五位;南京长江二桥、白沙洲长江大桥、荆沙长江大桥、鄂黄长江大桥、大佛寺长江大桥、李家沱长江大桥等特大桥的跨度名列预应力混凝土斜拉桥世界前十位

一座座桥,实现了天堑的跨越,缩短了时间与空间的距离,美化了秀美山川,为我国疆域的沟通和经济的腾飞起着了重要的作用。

随着科技的发展,新材料的开发和应用,在桥梁设计阶段采用高度发展的计算机辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。目前,我国桥梁建设正在与国际接轨,开始向大跨、新型、轻质和美观方向发展。

1 跨径不断增大

目前,世界上钢梁、钢拱的最大跨径已超过500m,钢斜拉桥为890m,而钢悬索桥达1990m。随着跨江跨海的需要,钢斜拉桥的跨径已经突破1000m,钢悬索桥将超过3000m。至于混凝土桥,梁桥的最大跨径为300m,拱桥已达420m,斜拉桥为530m

2 桥型不断丰富

本世纪5060年代,桥梁技术经历了一次飞跃:混凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌现和崛起,展示了丰富多彩的内容和极大的生命力;悬索桥采用钢箱加劲梁,技术上出现新的突破。

3 结构不断轻型化

悬索桥采用钢箱加劲梁,斜拉桥在密索体系的基础上采用开口截面甚至是板,使梁的高跨比大大减少,非常轻盈;拱桥采用少箱甚至拱肋或桁架体系;梁桥采用长悬臂、薄板件等,这些都使桥梁上部结构越来越轻型化。

4 重视美学及环境保护

桥梁是人类最杰出的建筑之一,闻名遐尔的美国旧金山金门大桥、澳大利亚悉尼港桥、英国伦敦桥、日本明石海峡大桥、中国上海杨浦大桥、南京长江二桥、香港青马大桥,这些著名大桥都是一件件宝贵的空间艺术品,成为陆地、江河、海洋和天空的景观,成为城市标志性建筑。因此,21世纪的桥梁结构必将更加重视建筑艺术造型,重视桥梁美学和景观设计,重视环境保护,达到人文景观同环境景观的完美结合。

大跨桥梁可分为梁式桥、拱式桥、斜拉桥、悬索桥、刚架桥五大类。

1 梁式桥

梁式桥种类很多,也是公路桥梁中最常用的桥型,其跨越能力可从20m直到300m之间。公路桥梁最常用的大跨径梁式桥主要为预应力混凝土连续箱形梁桥,70年代我国公路上开始修建连续箱梁桥,到目前为止我国已建成了多座连续箱梁桥,如一联长度1340m的钱塘江第二大桥和跨越高集海峡全长2070m的厦门大桥等,目前,我国预应力混凝土连续梁最大跨径为165m。由于预应力混凝土连续箱梁它具有桥面接缝少、梁高小、刚度大、整体性强,外形美观,便于养护等在构造、施工和使用上的优点,近年来已成为建成较多的桥梁。其发展趋势为:减轻结构自重,采用高标号混凝土。随着建筑材料和预应力技术发展,其跨径增大,葡萄牙已建成250m的连续箱梁桥,超过这一跨径,也不是太经济的。大跨径梁桥的上部结构大多采用箱形截面,是因为箱形截面有较大的抗扭刚度,箱梁允许有最大细长度,同T形梁相比徐变变形较小。由于嵌固在箱梁上的悬臂板,其长度可以较大幅度变化,并且腹板间距也能放大,能适应各种使用条件,特别适合于预应力混凝土连续梁桥、变宽度桥,因此,箱梁能在独柱支墩上建成弯斜桥。

2拱式桥

拱桥,在桥梁的发展史上曾经占有重要地位,迄今为止,已有三千多年的历史,当今亦因其形态美、造价低、承载潜力大而得到广泛的应用,也是大跨径桥梁形式之一,跨径从几十米到四百多米。我国大跨度混凝土拱桥的建设技术,居国际领先水平。拱桥的受力特点为拱肋承压、支承处一般有水平推力,按其建造材料来分,可分为圬工拱桥、钢筋(骨)混凝土拱桥、钢管混凝土拱桥、钢拱桥等。

3 斜拉桥

斜拉桥是我国大跨径桥梁最流行的桥型之一,目前为止建成或正在施工的斜拉桥共有40余座。大跨径混凝土斜拉桥的数量已居世界第一。整体来说,我国斜拉桥设计施工水平已迈入国际先进行列,部分成果达到国际领先水平。目前,我国正建设的香港昂船洲大桥、建设将要通车的江苏苏通大桥,其主跨均达到1000m以上。我国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200m,数量占世界第一。斜拉桥由索塔、主梁、斜拉索组成主要承重构件,利用索塔上伸出的若干斜拉索在梁跨内增加了弹性支承,减小了梁内弯矩,受力特点为外荷载从梁传递到索,再到索塔。选择不同的结构外形和材料可以组合成多彩多姿、新颖别致的各种形式。索塔型式有A型、倒Y型、H型、独柱,材料有钢、混凝土的。主梁有混凝土梁、钢箱梁、结合梁、混合式梁。斜拉索布置有单索面、平行双索面、斜索面,拉索材料有热挤PE防护平行钢丝索、PE外套防护钢绞线索。斜拉桥的施工方法主要采用悬臂浇筑和预制拼装。

4 悬索桥

悬索桥是特大跨径桥梁的主要型式之一,其造型优美,规模宏伟,从1883年美国建成布鲁克林桥(主跨486m)开始,至今已有120多年历史。20世纪80年代末,世界上修建悬索桥到了鼎盛时期,建成跨径大于1000m的悬索桥17座。日本于1998年建成了世界最大跨度的明石海峡大桥(主跨1991m),将悬索桥跨径从20世纪30年代的1000m提高到接近2000m,是世界悬索桥建设史上的一座丰碑。我国在悬索桥建设方面犹如异军突起,1995年在国内率先建成了汕头海湾大桥(主跨452m),在近五年内,相继建成西陵长江大桥(主跨900m)、虎门大桥(主跨888m)、宜昌长江大桥(主跨960m)以及名列世界第四位的江阴长江大桥(主跨1385m),名列世界第五位的香港青马大桥(主跨1377m)等11座大跨度悬索桥。多年来,我们积累了丰富的悬索桥设计与施工经验,已建成的润扬长江大桥(主跨1490m),标志着我国悬索桥设计和施工水平已迈入国际先进水平行列。悬索桥由索塔、锚碇、主缆、吊索(或吊杆)和主梁(加劲梁)5大部分组成。

5 刚架桥

八十年代以后,特别是九十年代以来,随着高速公路交通事业的迅速发展,要求行车平顺舒服,连续梁桥得到了迅速的发展,但由于此桥型在施工过程中需要梁墩临时固结和进行体系转换,同时需设置大吨位的橡胶支座,增加了工程费用及养护成本,于是预应力混凝土连续刚构桥应运而生,近年来得到较快的发展。刚架结构体系桥梁的上部结构梁(板)与下部结构墩柱(竖墙)整体结合在一起,梁与墩柱的结合处具有很大刚性。连续刚构在竖向荷载作用下,梁(多为箱型)主要受弯,而在柱脚处有水平反力,其受力状态介于梁桥与拱桥之间,梁因柱的抗弯刚度而得到卸载作用。

中国桥梁工程的难点

第一、 桥梁计算问题

桥梁结构计算方面一直是桥梁工程发展道路上的一个难点。不同规范,计算方法也有一些差别。桥梁计算之所以比较困难,个人认为主要还是由于其受荷载复杂性导致的。一座使用中的桥梁,可能受到如下荷载:机动车震动荷载,水流冲击力,风荷载,意外的船撞击力,温差引起的内力,地震力等。

目前普遍采用的分析方法有四种:有限元分析法、横向分布系数法、加权参数法以及试验法。其中有限单元法和加权参数法是普遍采用的方法。有限元法和加权残数法都是将微分方程转化为代数方程,但转化的方法不同。有限元法需找到相应的变分原理,这在数学上并不是容易的事。但是有限元法的基本特点是格式标准,容易编制出适应性广的程序。而加权残数法中的权函数和试函数的选取非常灵活,针对性好,但难以编制出适应性广的程序。有限元法和加权残数法比较,对于具体问题,前者的计算效率不如后者,甚至前者不能解决的问题,后者可以解决,但有限元法有通用程序可用,而加权残数法往往需要编制程序。所以鉴于实用性,有限单元法使用的更加普遍。像ANSYS等软件都是以有限单元法为计算基础的。

采用这四种方法计算时,难点关键在模型的选择以及受力情况的模拟,一般情况下不可能将受力情况模拟的和实际情况一模一样,所以计算结果与实际不一定吻合。虽然现在有ANSYS等有限元分析软件,但并不能够克服以上难点。所以。国内桥梁工程发展前景必定会是先进理论的发展前景,只有更加完善的分析理论推出,才会有更加优秀的桥梁诞生。

第二、 抗震防灾设计

桥梁的抗震研究是桥梁工程不可忽视的一个问题,国内外学者对桥梁震害的调查研究结果表明,现在桥梁的破坏大多沿顺桥向和横桥向发生,而顺桥向震害尤其严重。分析地震破坏的原因主要表现在以下几个方面:

1)地震位移造成的粱式桥梁上部活动节点处因盖梁宽度设置不足导致落梁或粱体相互磁撞引起的破坏;

2)由于地基土(如饱和粉细纱和饱和粘沙土)的地震液化影响同样加大了地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大;

3)支座破坏,在地震力的作用下,由于支座设计没有充分考虑抗震要求;

4)软弱的下部结构破坏;

5)在松软地基上的桥梁,特别是特大桥、大中桥,地震时往往发生河岸滑移使桥台向河心移动,导致全桥长度的缩短;

6)另外桥粱结构的震害还表现在如结构构造及连接不当造成的破坏、桥台台后填土位移过大造成桥台沉降或斜度过大造成桥墩台承受过大的扭矩而引起的破坏等多种原因。

由以上原因,可以发现地震对桥梁的破坏是多方面的,只要有一个环节造成桥梁的破坏,就可能导致桥梁的破坏。这也是桥梁工程抗震研究复杂性的原因。国内要在该方面有所突破,个人觉得还是比较困难的。毕竟国内的地震研究不是很出色,但这肯定会是今后科学研究着的工作方向,是发展跨海桥梁工程、大跨度桥梁工程的基础。

第三、 耐久性设计

耐久性的定义为结构在预期作用和预定的维护条件下,能在规定期限内长期维持其设计性能要求的能力。这里的期限应理解为构造物的使用年限。2004年颁布的桥梁规范增加了桥梁耐久性设计的内容。桥梁耐久性设计之所以写入新的桥梁规范,是由于其逐步彰显出的问题导致的。

一般来说,桥梁结构耐久性不足的后果主要体现在以下几个方面:

混凝土方面:开裂、渗漏、侵蚀、碳化、碱骨料反应等;

钢筋、钢束方面:锈蚀、脆化、疲劳、应力损失等;

粘接方面:钢筋和混凝土之间粘接力削弱、锚具失效、注浆不密实等。

20064月发生的深汕高速一座跨度16的空心板梁桥突然发生坍塌,这类事故是在桥梁运行了若干年之后发生的,很大原因在于桥梁发生了耐久性损失,承载力不足,导致了桥梁的坍塌。新世纪国内桥梁工程的发展应该主义这方面设计的力度。

21世纪中国桥梁的发展方向

21世纪,中国的桥梁工程应该向哪些方面发展、技术上应该有哪些创新?

其实许多发达国家在20世纪就已经基本完成了本土桥梁工程的建设任务,于是这些国家的桥梁工程师就把目光投向了跨海桥梁工程。比如欧非直布罗陀海峡、美亚白令海峡等洲际跨海桥梁工程,以期望使五大洲可以用陆路相连形成交通网。

可以见得,跨海桥梁工程将会成为21世纪桥梁建设的主题。我国桥梁的发展是否也该向跨海桥梁工程发展?国内桥梁技术该有哪些突破?以下我就国内桥梁发展方向、技术难点发表一些个人的看法。

①国内桥梁工程的发展方向

从以上谈到的跨海桥梁工程可以看出,跨海桥梁的引出无非是因为本土桥梁市场已经饱和,为了拓宽市场、引入更加先进的技术、解决实际需要,才产生了跨海桥梁工程。

很明显,国内的桥梁市场还没有达到饱和的地步,中国地大物博,海川纵贯,会是21世纪桥梁工程竞争的一个很大的市场。虽然国内已经有一些达到国际先进水平的桥梁,但为数不多,同时许多技术难点还得依靠国外,仿造国外桥梁的现象比较严重。所以可以得出结论,21世纪初期国内的桥梁发展方向主要还是在本土。

本土桥梁工程的发展对象主要集中在长江黄河之上。长江黄河把中国国土三分,阻碍了南北交通的发展,虽然目前已经建成了若干跨江、跨河大桥,但为数不多,南北交通还是比较困难,影响了国内经济的快速发展。

所以,跨江、跨河等大跨度桥梁的建设会是这几年的主流。比如2004年的上海长江隧桥工程,该工程是交通部确定的国家重点公路建设规划中上海至西安线的重要组成部分。工程起自浦东五号沟,与郊区环线相接,经长兴岛,止于祟明陈家镇,全长约25.5公里。其中,以隧道方式穿越长江南港水域,长约8.9公里;以桥梁方式跨越长江北港水域,长约10.3公里;长兴岛和崇明岛接线道路共长约6.3公里。又比如2008年正式通车的苏通长江公路大桥,苏通大桥是江苏省公路主骨架网纵一——赣榆至吴江高速公路的重要组成部分,是我国建桥史上工程规模最大、综合建设条件最复杂的特大型桥梁工程。该桥由113座桥墩构成,长达8146,有92座桥墩立在江水之中。其中第6869两座为主塔桥墩,每墩耗资约6亿元,工程最为壮观,墩长114、宽48,相当于一个足球场大小,厚约9,灌注混凝土达5万立方米,墩下由131根,长达120,每根直径2.52.8的钻孔灌注桩组成,这是世界上规模最大、入土最深的桥梁桩基础,因此创下第1项世界纪录。世界斜拉桥最大主跨1088、最长斜拉索577、最大群桩基础131根、最高主桥塔300.4

苏通大桥的建成彰显了大跨度桥梁的主流地位。但是我们不得不承认,大跨度桥梁必定会有其饱和的那一天,跨海桥梁工程是历史发展的方向。如果说21世纪初期是本土大跨度桥梁工程的天下,那么21世纪中后期,跨海桥梁工程的发展是避免不了的。

跨海工程的发展主要目的是为了解决一些城市之间的交通往来。东南沿海一些城市目前还主要靠渡轮来解决交通问题,一旦发展跨海桥梁工程,将会给这些地区带来很大的便捷,同时能够促进这些地区经济的进一步发展。

其实早在20世纪末,国内一些地区就把跨海桥梁工程纳入了交通规划之中。比如沿太平洋海岸的南北公路干线——同三线(黑龙江省沿江至海南省三亚)上将通过五个跨海工程来实现真正的贯通,这五个跨海工程分别是:渤海海峡工程、长江口越江工程、杭州湾跨海工程、珠江口伶仃洋跨海工程以及琼州海峡工程。其中琼州海峡工程可能成为中国最困难的跨海工程。20千米的海峡宽度,平均60的水深,需要建造连续多孔的特大跨度桥梁。加上灾害性的地震和台风的频繁袭击以及复杂的地质条件,将会是21世纪中国桥梁工程师面临的严峻挑战。这五个跨海工程一旦完成,南北交通将得到空前的发展。

论桥梁工程的发展前景

相关推荐